What does … mean in Math? The Ellipsis! An ellipsis is a series of dots (typically three, such as “…”) that usually indicates an intentional omission of a word, sentence, or whole section from a text without altering its original meaning.

STRUGGLING WITH MATH SYMBOLS? Get the assistance, on-going support and tutors you need to learn faster, make fewer mistakes and get the grades you deserve. Learn More.

Below is a table from Rapid Tables, that can assist you with all the symbols will possibly need:

Basic math symbols

Symbol Symbol Name Meaning / definition Example
= equals sign equality 5 = 2+3
5 is equal to 2+3
not equal sign inequality 5 ≠ 4
5 is not equal to 4
approximately equal approximation sin(0.01) ≈ 0.01,
x ≈ y means x is approximately equal to y
> strict inequality greater than 5 > 4
5 is greater than 4
< strict inequality less than 4 < 5
4 is less than 5
inequality greater than or equal to 5 ≥ 4,
x ≥ y means x is greater than or equal to y
inequality less than or equal to 4 ≤ 5,
x ≤ y means x is less than or equal to y
( ) parentheses calculate expression inside first 2 × (3+5) = 16
[ ] brackets calculate expression inside first [(1+2)×(1+5)] = 18
+ plus sign addition 1 + 1 = 2
minus sign subtraction 2 − 1 = 1
± plus – minus both plus and minus operations 3 ± 5 = 8 and -2
± minus – plus both minus and plus operations 3 ∓ 5 = -2 and 8
* asterisk multiplication 2 * 3 = 6
× times sign multiplication 2 × 3 = 6
multiplication dot multiplication 2 ⋅ 3 = 6
÷ division sign / obelus division 6 ÷ 2 = 3
/ division slash division 6 / 2 = 3
horizontal line division / fraction \frac{6}{2}=3
mod modulo remainder calculation 7 mod 2 = 1
. period decimal point, decimal separator 2.56 = 2+56/100
ab power exponent 2= 8
a^b caret exponent 2 ^ 3 = 8
a square root

a ⋅ a  = a

√9 = ±3
3a cube root 3a ⋅ 3√a  ⋅ 3√a  = a 3√8 = 2
4a fourth root 4a ⋅ 4√a  ⋅ 4√a  ⋅ 4√a = a 4√16 = ±2
na n-th root (radical) for n=3, n√8 = 2
% percent 1% = 1/100 10% × 30 = 3
per-mille 1‰ = 1/1000 = 0.1% 10‰ × 30 = 0.3
ppm per-million 1ppm = 1/1000000 10ppm × 30 = 0.0003
ppb per-billion 1ppb = 1/1000000000 10ppb × 30 = 3×10-7
ppt per-trillion 1ppt = 10-12 10ppt × 30 = 3×10-10

Geometry symbols

Symbol Symbol Name Meaning / definition Example
angle formed by two rays ∠ABC = 30°
measured angle ABC = 30°
spherical angle AOB = 30°
right angle = 90° α = 90°
° degree 1 turn = 360° α = 60°
deg degree 1 turn = 360deg α = 60deg
prime arcminute, 1° = 60′ α = 60°59′
double prime arcsecond, 1′ = 60″ α = 60°59′59″
line infinite line
AB line segment line from point A to point B
ray line that start from point A
arc arc from point A to point B  = 60°
perpendicular perpendicular lines (90° angle) AC ⊥ BC
parallel parallel lines AB ∥ CD
congruent to equivalence of geometric shapes and size ∆ABC≅ ∆XYZ
~ similarity same shapes, not same size ∆ABC~ ∆XYZ
Δ triangle triangle shape ΔABC≅ ΔBCD
|xy| distance distance between points x and y xy | = 5
π pi constant π = 3.141592654…is the ratio between the circumference and diameter of a circle c = πd = 2⋅πr
rad radians radians angle unit 360° = 2π rad
c radians radians angle unit 360° = 2π c
grad gradians / gons grads angle unit 360° = 400 grad
g gradians / gons grads angle unit 360° = 400 g

Algebra symbols

Symbol Symbol Name Meaning / definition Example
x x variable unknown value to find when 2x = 4, then x = 2
equivalence identical to
equal by definition equal by definition
:= equal by definition equal by definition
~ approximately equal weak approximation 11 ~ 10
approximately equal approximation sin(0.01) ≈ 0.01
proportional to proportional to

y ∝ x when y = kx, kconstant

lemniscate infinity symbol
much less than much less than 1 ≪ 1000000
much greater than much greater than 1000000 ≫ 1
( ) parentheses calculate expression inside first 2 * (3+5) = 16
[ ] brackets calculate expression inside first [(1+2)*(1+5)] = 18
{ } braces set
x floor brackets rounds number to lower integer ⌊4.3⌋ = 4
x ceiling brackets rounds number to upper integer ⌈4.3⌉ = 5
x! exclamation mark factorial 4! = 1*2*3*4 = 24
x | single vertical bar absolute value | -5 | = 5
(x) function of x maps values of x to f(x) (x) = 3x+5
(f ∘ g) function composition (f ∘ g) (x) = (g(x)) (x)=3x,g(x)=x-1 ⇒(f ∘ g)(x)=3(x-1)
(a,b) open interval (a,b) = {x | a < x < b} x∈ (2,6)
[a,b] closed interval [a,b] = {x | a ≤ x ≤ b} x ∈ [2,6]
delta change / difference t = t t0
discriminant Δ = b2 – 4ac
sigma summation – sum of all values in range of series  xi= x1+x2+…+xn
∑∑ sigma double summation
capital pi product – product of all values in range of series  xi=x1∙x2∙…∙xn
e e constant / Euler’s number e = 2.718281828… e = lim (1+1/x)x , x→∞
γ Euler-Mascheroni constant γ = 0.5772156649…
φ golden ratio golden ratio constant
π pi constant π = 3.141592654…is the ratio between the circumference and diameter of a circle c = πd = 2⋅πr

Linear Algebra Symbols

Symbol Symbol Name Meaning / definition Example
· dot scalar product · b
× cross vector product × b
AB tensor product tensor product of A and B A ⊗ B
\langle x,y \rangle inner product
[ ] brackets matrix of numbers
( ) parentheses matrix of numbers
A | determinant determinant of matrix A
det(A) determinant determinant of matrix A
|| x || double vertical bars norm
AT transpose matrix transpose (AT)ij = (A)ji
A Hermitian matrix matrix conjugate transpose (A)ij = (A)ji
A* Hermitian matrix matrix conjugate transpose (A*)ij = (A)ji
A -1 inverse matrix A A-1 = I
rank(A) matrix rank rank of matrix A rank(A) = 3
dim(U) dimension dimension of matrix A dim(U) = 3

Probability and statistics symbols

Symbol Symbol Name Meaning / definition Example
P(A) probability function probability of event A P(A) = 0.5
P(A ∩ B) probability of events intersection probability that of events A and B P(AB) = 0.5
P(A ∪ B) probability of events union probability that of events A or B P(AB) = 0.5
P(A | B) conditional probability function probability of event A given event B occured P(A | B) = 0.3
(x) probability density function (pdf) P( x  b) = ∫ f (x) dx
F(x) cumulative distribution function (cdf) F(x) = P(X x)
μ population mean mean of population values μ = 10
E(X) expectation value expected value of random variable X E(X) = 10
E(X | Y) conditional expectation expected value of random variable X given Y E(X | Y=2) = 5
var(X) variance variance of random variable X var(X) = 4
σ2 variance variance of population values σ= 4
std(X) standard deviation standard deviation of random variable X std(X) = 2
σX standard deviation standard deviation value of random variable X σX  = 2
median middle value of random variable x
cov(X,Y) covariance covariance of random variables X and Y cov(X,Y) = 4
corr(X,Y) correlation correlation of random variables X and Y corr(X,Y) = 0.6
ρX,Y correlation correlation of random variables X and Y ρX,Y = 0.6
summation summation – sum of all values in range of series
∑∑ double summation double summation
Mo mode value that occurs most frequently in population
MR mid-range MR = (xmax+xmin)/2
Md sample median half the population is below this value
Q1 lower / first quartile 25% of population are below this value
Q2 median / second quartile 50% of population are below this value = median of samples
Q3 upper / third quartile 75% of population are below this value
x sample mean average / arithmetic mean x = (2+5+9) / 3 = 5.333
s 2 sample variance population samples variance estimator s 2 = 4
s sample standard deviation population samples standard deviation estimator s = 2
zx standard score zx = (x-x) / sx
~ distribution of X distribution of random variable X ~ N(0,3)
N(μ,σ2) normal distribution gaussian distribution ~ N(0,3)
U(a,b) uniform distribution equal probability in range a,b ~ U(0,3)
exp(λ) exponential distribution (x) = λeλx , x≥0
gamma(c, λ) gamma distribution (x) = λ c xc-1eλx / Γ(c), x≥0
χ 2(k) chi-square distribution (x) = xk/2-1ex/2 / ( 2k/2 Γ(k/2) )
(k1, k2) F distribution
Bin(n,p) binomial distribution (k) = nCk pk(1-p)n-k
Poisson(λ) Poisson distribution (k) = λkeλ / k!
Geom(p) geometric distribution (k) =  p(1-p) k
HG(N,K,n) hyper-geometric distribution
Bern(p) Bernoulli distribution

Combinatorics Symbols

Symbol Symbol Name Meaning / definition Example
n! factorial n! = 1⋅2⋅3⋅…⋅n 5! = 1⋅2⋅3⋅4⋅5 = 120
nPk permutation _{n}P_{k}=\frac{n!}{(n-k)!} 5P3 = 5! / (5-3)! = 60
nCk

combination _{n}C_{k}=\binom{n}{k}=\frac{n!}{k!(n-k)!} 5C3 = 5!/[3!(5-3)!]=10

Set theory symbols

Symbol Symbol Name Meaning / definition Example
{ } set a collection of elements A = {3,7,9,14},
B = {9,14,28}
A ∩ B intersection objects that belong to set A and set B A ∩ B = {9,14}
A ∪ B union objects that belong to set A or set B A ∪ B = {3,7,9,14,28}
A ⊆ B subset A is a subset of B. set A is included in set B. {9,14,28} ⊆ {9,14,28}
A ⊂ B proper subset / strict subset A is a subset of B, but A is not equal to B. {9,14} ⊂ {9,14,28}
A ⊄ B not subset set A is not a subset of set B {9,66} ⊄ {9,14,28}
A ⊇ B superset A is a superset of B. set A includes set B {9,14,28} ⊇ {9,14,28}
A ⊃ B proper superset / strict superset A is a superset of B, but B is not equal to A. {9,14,28} ⊃ {9,14}
A ⊅ B not superset set A is not a superset of set B {9,14,28} ⊅ {9,66}
2A power set all subsets of A
\mathcal{P}(A) power set all subsets of A
A = B equality both sets have the same members A={3,9,14},
B={3,9,14},
A=B
Ac complement all the objects that do not belong to set A
A \ B relative complement objects that belong to A and not to B A = {3,9,14},
B = {1,2,3},
A-B = {9,14}
A – B relative complement objects that belong to A and not to B A = {3,9,14},
B = {1,2,3},
A-B = {9,14}
A ∆ B symmetric difference objects that belong to A or B but not to their intersection A = {3,9,14},
B = {1,2,3},
A ∆ B = {1,2,9,14}
A ⊖ B symmetric difference objects that belong to A or B but not to their intersection A = {3,9,14},
B = {1,2,3},
A ⊖ B = {1,2,9,14}
a∈A element of,
belongs to
set membership A={3,9,14}, 3 ∈ A
x∉A not element of no set membership A={3,9,14}, 1 ∉ A
(a,b) ordered pair collection of 2 elements
A×B cartesian product set of all ordered pairs from A and B
|A| cardinality the number of elements of set A A={3,9,14}, |A|=3
#A cardinality the number of elements of set A A={3,9,14}, #A=3
aleph-null infinite cardinality of natural numbers set
aleph-one cardinality of countable ordinal numbers set
Ø empty set Ø = { } C = {Ø}
\mathbb{U} universal set set of all possible values
\mathbb{N}0 natural numbers / whole numbers  set (with zero) \mathbb{N}0 = {0,1,2,3,4,…} 0 ∈ \mathbb{N}0
\mathbb{N}1 natural numbers / whole numbers  set (without zero) \mathbb{N}1 = {1,2,3,4,5,…} 6 ∈ \mathbb{N}1
\mathbb{Z} integer numbers set \mathbb{Z} = {…-3,-2,-1,0,1,2,3,…} -6 ∈ \mathbb{Z}
\mathbb{Q} rational numbers set \mathbb{Q} = {| x=a/ba,b\mathbb{Z}} 2/6 ∈ \mathbb{Q}
\mathbb{R} real numbers set \mathbb{R} = {x | -∞ < x <∞} 6.343434∈\mathbb{R}
\mathbb{C} complex numbers set \mathbb{C} = {| z=a+bi, -∞<a<∞,      -∞<b<∞} 6+2i ∈ \mathbb{C}

Logic symbols

Symbol Symbol Name Meaning / definition Example
and and x  y
^ caret / circumflex and x ^ y
& ampersand and x & y
+ plus or x + y
reversed caret or x ∨ y
| vertical line or x | y
x single quote not – negation x
x bar not – negation x
¬ not not – negation ¬ x
! exclamation mark not – negation x
circled plus / oplus exclusive or – xor x ⊕ y
~ tilde negation x
implies
equivalent if and only if (iff)
equivalent if and only if (iff)
for all
there exists
there does not exists
therefore
because / since

Calculus & analysis symbols

Symbol Symbol Name Meaning / definition Example
\lim_{x\to x0}f(x) limit limit value of a function
ε epsilon represents a very small number, near zero ε  0
e e constant / Euler’s number e = 2.718281828… e = lim (1+1/x)xx→∞
y ‘ derivative derivative – Lagrange’s notation (3x3)’ = 9x2
y ” second derivative derivative of derivative (3x3)” = 18x
y(n) nth derivative n times derivation (3x3)(3) = 18
\frac{dy}{dx} derivative derivative – Leibniz’s notation d(3x3)/dx = 9x2
\frac{d^2y}{dx^2} second derivative derivative of derivative d2(3x3)/dx2 = 18x
\frac{d^ny}{dx^n} nth derivative n times derivation
\dot{y} time derivative derivative by time – Newton’s notation
time second derivative derivative of derivative
Dy derivative derivative – Euler’s notation
Dx2y second derivative derivative of derivative
\frac{\partial f(x,y)}{\partial x} partial derivative ∂(x2+y2)/∂x = 2x
integral opposite to derivation ∫ f(x)dx
∫∫ double integral integration of function of 2 variables ∫∫ f(x,y)dxdy
∫∫∫ triple integral integration of function of 3 variables ∫∫∫ f(x,y,z)dxdydz
closed contour / line integral
closed surface integral
closed volume integral
[a,b] closed interval [a,b] = {| a  x  b}
(a,b) open interval (a,b) = {| a < x < b}
i imaginary unit i ≡ √-1 z = 3 + 2i
z* complex conjugate = a+bi → z*=abi z* = 3 – 2i
z complex conjugate = a+bi → = abi z = 3 – 2i
nabla / del gradient / divergence operator f (x,y,z)
vector
unit vector
* y convolution y(t) = x(t) * h(t)
Laplace transform F(s) = {(t)}
Fourier transform X(ω) = {(t)}
δ delta function
lemniscate infinity symbol

Numeral symbols

Name European Roman Hindu Arabic Hebrew
zero 0 ٠
one 1 I ١ א
two 2 II ٢ ב
three 3 III ٣ ג
four 4 IV ٤ ד
five 5 V ٥ ה
six 6 VI ٦ ו
seven 7 VII ٧ ז
eight 8 VIII ٨ ח
nine 9 IX ٩ ט
ten 10 X ١٠ י
eleven 11 XI ١١ יא
twelve 12 XII ١٢ יב
thirteen 13 XIII ١٣ יג
fourteen 14 XIV ١٤ יד
fifteen 15 XV ١٥ טו
sixteen 16 XVI ١٦ טז
seventeen 17 XVII ١٧ יז
eighteen 18 XVIII ١٨ יח
nineteen 19 XIX ١٩ יט
twenty 20 XX ٢٠ כ
thirty 30 XXX ٣٠ ל
forty 40 XL ٤٠ מ
fifty 50 L ٥٠ נ
sixty 60 LX ٦٠ ס
seventy 70 LXX ٧٠ ע
eighty 80 LXXX ٨٠ פ
ninety 90 XC ٩٠ צ
one hundred 100 C ١٠٠ ק

 

Greek alphabet letters

Upper Case Letter Lower Case Letter Greek Letter Name English Equivalent Letter Name Pronounce
Α α Alpha a al-fa
Β β Beta b be-ta
Γ γ Gamma g ga-ma
Δ δ Delta d del-ta
Ε ε Epsilon e ep-si-lon
Ζ ζ Zeta z ze-ta
Η η Eta h eh-ta
Θ θ Theta th te-ta
Ι ι Iota i io-ta
Κ κ Kappa k ka-pa
Λ λ Lambda l lam-da
Μ μ Mu m m-yoo
Ν ν Nu n noo
Ξ ξ Xi x x-ee
Ο ο Omicron o o-mee-c-ron
Π π Pi p pa-yee
Ρ ρ Rho r row
Σ σ Sigma s sig-ma
Τ τ Tau t ta-oo
Υ υ Upsilon u oo-psi-lon
Φ φ Phi ph f-ee
Χ χ Chi ch kh-ee
Ψ ψ Psi ps p-see
Ω ω Omega o o-me-ga

Roman numerals

Number Roman numeral
0 not defined
1 I
2 II
3 III
4 IV
5 V
6 VI
7 VII
8 VIII
9 IX
10 X
11 XI
12 XII
13 XIII
14 XIV
15 XV
16 XVI
17 XVII
18 XVIII
19 XIX
20 XX
30 XXX
40 XL
50 L
60 LX
70 LXX
80 LXXX
90 XC
100 C
200 CC
300 CCC
400 CD
500 D
600 DC
700 DCC
800 DCCC
900 CM
1000 M
5000 V
10000 X
50000 L
100000 C
500000 D
1000000 M

 

STRUGGLING WITH COLLEGE MATH? Get the assistance, on-going support and tutors you need to learn faster, make fewer mistakes and get the grades you deserve. Learn More.

Happy Learning!

 

Get the Math help you need to finish your homework.